OBSERVABILITY, DUALITY, AND MINIMALITY

Sadegh Bolouki

Lecture slides for ECE 515
University of Illinois, Urbana-Champaign
Fall 2016
Overview

1. An Overview
2. Definition
3. LTI Case
4. General LTV Case
5. Duality
6. Kalman Canonical Forms
7. Minimality
An Overview
Definition
The LTV system above is said to be **observable at time** t_0 if there exists some finite time t_1 such that for any $x_0 \in \mathbb{R}^n$, knowledge of the input $u(t)$ and the output $y(t)$ for $t_0 \leq t \leq t_1$ suffices to determine x_0.

Remember that $x(t) = \phi(t, t_0)x_0 + \int_{t_0}^{t} \phi(t, \tau)B(\tau)u(\tau)d\tau$, that means

$$y(t) = C(t)\phi(t, t_0)x_0 + C(t) \int_{t_0}^{t} \phi(t, \tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

▶ Observability at t_0 only depends on $C(t)$ and $\phi(t, t_0)$ for $t \geq t_0$.
LTI Case
LTI Case

\[
\begin{aligned}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{aligned}
\]

Observability Matrix:

\[
\mathcal{O} := \begin{bmatrix}
C \\
CA \\
CA^2 \\
\vdots \\
CA^{n-1}
\end{bmatrix}
\]

Theorem

The LTI system above is **observable** (at any \(t_0 \)) if and only if the observability matrix \(\mathcal{O} \) is full-column-rank.

- If the LTI system above is observable, *the pair* \((A, C)\) *is said to be observable*.
- The kernel of \(\mathcal{O} \) is referred to as the *unobservable subspace*.
General LTV Case
General LTV Case

\[\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t) \\
y(t) &= C(t)x(t) + D(t)u(t)
\end{align*}\]

Theorem

An LTV system is observable at t_0 if and only if the observability Gramian $H(t_1, t_0)$ is nonsingular for some finite $t_1 > t_0$ where

\[H(t_1, t_0) := \int_{t_0}^{t_1} \phi(\tau, t_0)C^T(\tau)C(\tau)\phi(\tau, t_0) d\tau.\]
Duality
Controllability and observability are dual concepts.

Model I:
\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t) \\
y(t) &= C(t)x(t) + D(t)u(t)
\end{align*}
\]

Dual of Model I:
\[
\begin{align*}
\dot{x}(t) &= -A^T(t)x(t) + C^T(t)u(t) \\
y(t) &= B^T(t)x(t) + D^T(t)u(t)
\end{align*}
\]

Model I is controllable/observable if and only if its dual is observable/controllable.

Controllability tests can now be transformed to observability tests. For instance

Theorem

An LTI system is observable if and only if \([sI - A^T | C^T]\) is full-row-rank for any \(s \in \mathbb{C}\).

▶ unobservable mode \(\lambda\): \([\lambda I - A^T | C^T]\) is not full-row-rank.
Kalman Canonical Forms
\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\quad \overset{x = Px}{\implies} \quad
\begin{align*}
\dot{x} &= \tilde{A}\bar{x} + \tilde{B}u \\
y &= \tilde{C}\bar{x} + \tilde{D}u
\end{align*}

\tilde{A} = PAP^{-1}, \quad \tilde{B} = PB, \quad \tilde{C} = CP^{-1}, \quad \tilde{D} = D
Kalman Controllability Canonical Form (KCCF)

Let the controllability matrix C has rank n_1.

$$P := \begin{bmatrix} n_1 \text{ linearly independent columns of } C & (n - n_1)\text{ vectors to make } P \text{ non-singular} \end{bmatrix}^{-1}$$

Then

$$\bar{A} = \begin{bmatrix} A_c & \ast \\ 0 & A_c^* \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} B_c \\ 0 \end{bmatrix}$$

where (A_c, B_c) is controllable.
We can find P such that $\bar{A} = PAP^{-1}$ and $\bar{C} = CP^{-1}$ have the following forms:

$$\bar{A} = \begin{bmatrix} A_o & \mathbf{0} \\ \ast & A_\bar{o} \end{bmatrix}, \quad \bar{C} = \begin{bmatrix} C_o & \mathbf{0} \end{bmatrix}$$

where (A_o, C_o) is observable.
Minimality
Minimality

Remember *realizations*?

\[G(s) : \text{proper rational function of } s \]

\((A, B, C, D) \) is a realization of \(G(s) \) if

\[G(s) = C(sI - A)^{-1}B + D. \]

Definition

A realization of \(G(s) \) is said to be **minimal** if it involves a minimal number of state variables.

Theorem

A realization of \(G(s) \) is **minimal** if and only if it is *both* controllable and observable.